Due to the natural low permittivity in vacuum, the voltage stresses on compensation capacitors and inductances in the capacitive power transfer (CPT) system are very high, which brings challenges to the design of CPT systems in practical applications. This paper used a threecell structure analysis method for the CPT system to determine the optimal load for achieving the maximum power transfer or maximum efficiency transfer, through considering the maximum withstand voltage of the capacitor or inductor. A shielding layer with edge bending is designed to reduce the range of dangerous areas markedly. The simulation and experimental results verified the above conclusion. The prototype of the CPT system with transfer 3.1 kW across a 13 cm air gap and DC-DC transfer efficiency of 91.4% is built.
Loading....